
 Volume 3, Issue 1 (2015) 250-253 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 250
 IJARI

Design of Low Efficiency DSP Architecture for Wireless Sensor

Networks
Nirmal Raj. A, Edit Pelinda.S
Department of Electronic and Communication Engineering, Vandayar Engineering College, Thanjavur, Tamil Nadu,

India

 Abstract
Radio communication exhibits the highest energy consumption in wireless
sensor nodes. Given their limited energy supply from batteries or scavenging,
these nodes must trade data communication for on-the-node computation.
Currently, they are designed around off-the-shelf low-power microcontrollers.
But by employing a more appropriate processing element, the energy
consumption can be significantly reduced. This paper describes the design and

implementation of the newly proposed folded-tree architecture for on-the-node
data processing in wireless sensor networks, using parallel prefix operations
and data locality in hardware. Measurements of the silicon implementation
show an improvement of 10–20× in terms of energy as compared to traditional
modern micro-controllers found in sensor nodes.

1. Introduction

Wireless sensor network (WSN) applications range
from medical monitoring to environmental sensing,
industrial inspection, and military surveillance. WSN nodes
essentially consist of sensors, a radio, and a microcontroller
combined with a limited power supply, e.g., battery or
energy scavenging. Since radio transmissions are very

expensive in terms of energy, they must be kept to a
minimum in order to extend node lifetime. The ratio of
communication-to- computation energy cost can range from
100 to 3000. So data communication must be traded for on-
the-node processing which in turn can convert the many
sensor readings into a few useful data values. The data-
driven nature of WSN applications requires a specific data
processing approach. Previously, we have shown how

parallel prefix computations can be a common denominator
of many WSN data processing algorithms. The goal of this
paper is to design an ultra- low-energy WSN digital signal
processor by further exploiting this and other characteristics
unique to WSNs.

Several specific characteristics, unique to WSNs, need
to be considered when designing the data processor
architecture for WSNs.

Data-Driven: WSN applications are all about sensing
data in an environment and translating this into useful
information for the end-user. So virtually all WSN
applications are characterized by local processing of the
sensed data.

Many-to-Few: Since radio transmissions are very
expensive in terms of energy, they must be kept to a
minimum in order to extend node lifetime. Data

communication must be traded for on-the-node computation
to save energy, so many sensor readings can be reduced to a
few useful data values.

Application-Specific: A “one-size-fits-all” solution
does not exist since a general purpose processor is far too
power hungry for the sensor node’s limited energy budget.
ASICs, on the other hand, are more energy efficient but lack

Corresponding Author,

E-mail address: pelindasec@gmail.com
All rights reserved: http://www.ijari.org

the flexibility to facilitate many different applications.

Apart from the above characteristics of WSNs, two key
requirements for improving existing processing and control
architectures can be identified

Minimize Memory Access: Modern micro-controllers
(MCU) are based on the principles of a divide-and-conquer

strategy of ultra-fast processors on the one hand and
arbitrary complex programs on the other hand. But due to
this generic approach, algorithms are deemed to spend up to
40– 60% of the time in accessing memory, making it a
bottle- neck. In addition, the lack of task-specific operations
leads to inefficient execution, which results in longer
algorithms and significant memory book keeping.

Combine Data Flow and Control Flow Principles: To
man- age the data stream (to/from data memory) and the

instruction stream (from program memory) in the core
functional unit, two approaches exist. Under control flow,
the data stream is a consequence of the instruction stream,
while under data flow the instruction stream is a
consequence of the data stream. Traditional processor
architecture is a control flow machine, with programs that
execute sequentially as a stream of instructions. In contrast,
a data flow program identifies the data dependencies, which

enable the processor to more or less choose the order of
execution. The latter approach has been hugely successful in
specialized high-throughput applications, such as
multimedia and graphics processing. This paper shows how
a combination of both approaches can lead to a significant
improvement over traditional WSN data processing
solutions.

2. Parallel Prefix Operations

In the digital design world, prefix operations are best
known for their application in the class of carry look-ahead
adders. The addition of two inputs A and B in this case

consists of three stages a bitwise propagates-generate (PG)
logic stage, a group PG logic stage, and a sum-stage. The
outputs of the bitwise PG stage (Pi = Ai ⊕ Bi and Gi = Ai

・ Bi) are fed as (Pi, Gi)-pairs to the group PG logic stage,

which implements the following expression:

(Pi, Gi) ◦ (Pi+1, Gi+1) = (Pi ・ Pi+1, Gi + Pi ・ Gi+1) (1)

Article Info
Article history:
Received 10 February 2015
Received in revised form
15 February 2015

Accepted 28 February 2015
Available online 15 March 2015

Keywords
Digital Processor,
Parallel Prefix,
Wireless Sensor Network (WSN)

 Volume 3, Issue 1 (2015) 250-253 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 251
 IJARI

It can be shown this ◦-operator has an identify element
I = (1, 0) and is associative.

Fig: 1. Example of a prefix calculation with sum-operator

using Blelloch’s generic approach in a trunk- and twig-
phase

For example, the binary numbers A = “1001” and B =
“0101” are added together. The bitwise PG logic of LSB-
first noted A = {1001} and B = {1010} returns the PG-pairs
for these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0); (1,
0)}. Using these pairs as input for the group PG-network,
defined by the ◦-operator to calculate the prefix operation,
results in the carry-array G = {1, 0, 0, 0}. In fact, it contains

all the carries of the addition, hence the name carry look
ahead. Combined with the corresponding propagate values
Pi, this yields the sum S = {0111}, which corresponds to
“1110.” The group PG logic is an example of a parallel
prefix computation with the given ◦-operator. The output of
this parallel prefix PG-network is called the all-prefix set
defined next. Given a binary closed and associative operator
◦ with identity element I and an ordered set of n elements

[a0, a1, a2. . . an−1], the reduced-prefix set is the ordered

set [I, a0, (a0◦a1). . . (a0◦a1◦・ ・ ・◦an−2)], while the all-

prefix set is the ordered set [a0, (a0 ◦ a1). . . (a0 ◦ a1 ◦ ・ ・

・ ◦ an−1)], of which the last element (a0 ◦ a1 ◦ ・ ・ ・ ◦

an−1) is called the prefix element. For example, if ◦ is a
simple addition, then the prefix element of the ordered set
[3, 1, 2, 0, 4, 1, 1, 3] is _ai = 15. Blelloch’s procedure to
calculate the prefix-operations on a binary tree requires two
phases. In the trunk-phase, the left value L is saved locally
as Lsave and it is added to the right value R, which is
passed on toward the root. This continues until the parallel-
prefix element 15 is found at the root. Note that each time; a

store-and-calculate operation is executed. Then the twig-
phase starts, during which data moves in the opposite
direction, from the root to the leaves. Now the incoming
value, beginning with the sum identity element 0 at the root,
is passed to the left child, while it is also added to the
previously saved Lsave and passed to the right child. In the
end, the reduced-prefix set is found at the leaves. An
example application of the parallel-prefix operation with the
sum operator (prefix-sum) is filtering an array so that all

elements that do not meet certain criteria are filtered out.
This is accomplished by first deriving a “keep”-array,
holding “1” if an element matches the criteria and “0” if it
should be left out. Calculating the prefix-sum of this array

will return the amount as well as the position of the to-be-
kept elements of the input array. The result array simply
takes an element from the input array if the corresponding
keep-array element is “1” and copies it to the position found
in the corresponding element of the prefix-sum-array. To

further illustrate this, suppose the criterion is to only keep
odd elements in the array and throw away all even elements.
This criterion can be formulated as keep(x) = (x mod 2).

The rest is calculated as follows:
input = [2, 3, 8, 7, 6, 2, 1, 5]
keep = [0, 1, 0, 1, 0, 0, 1, 1]
prefix = [0, 1, 1, 2, 2, 2, 3, 4]
result = [3, 7, 1, 5].

The keep-array provides the result of the criterion.
Then the parallel-prefix with sum-operator is calculated,
which results in the prefix-array. Its last element indicates
how many elements are to be kept (i.e., 4). Whenever the
keep-array holds a “1,” the corresponding input-element is
copied in the result-array at the index given by the
corresponding prefix-element (i.e., 3 to position 1, 7 to
position 2, etc.). This is a very generic approach that can be

used in combination with more complex criteria as well.

3. The Proposed Modulo

Programming and Using the Folded Tree:

A straightforward binary tree implementation of
Blelloch’s approach as shown in Fig. costs a significant
amount of area as n inputs require p = n −1 PEs. To reduce
area and power, pipelining can be traded for throughput.
With a classic binary tree, as soon as a layer of PEs finishes
processing, the results are passed on and new calculations
can already recommence independently. The idea presented
here is to fold the tree back onto itself to maximally reuse

the PEs. In doing so, p becomes proportional to n/2 and the
area is cut in half. Note that also the interconnect is reduced.
On the other hand, throughput decreases by a factor of log2
(n) but since the sample rate of different physical
phenomena relevant for WSNs does not exceed 100 kHz,
this leaves enough room for this tradeoff to be made. This
newly proposed folded tree topology is depicted in Fig.
which is functionally equivalent to the binary tree on the

left.
Now it will be shown how Blelloch’s generic approach

for an arbitrary parallel prefix operator can be programmed
to run on the folded tree. As an example, the sum-operator
is used to implement a parallel-prefix sum operation on a 4-
PE folded tree. First, the trunk-phase is considered. At the
top of Fig. A folded tree with four PEs is drawn of which
PE3 and PE4 are hatched differently. The functional
equivalent binary tree in the center again shows how data

moves from leaves to root during the trunk-phase. It is
annotated with the letters L and R to indicate the left and
right input value of inputs A and B. In accordance with
Blelloch’s approach, L is saved as Lsave and the sum L+R
is passed. Note that these annotations are not global,
meaning that annotations with the same name do not
necessarily share the same actual value.

 Volume 3, Issue 1 (2015) 250-253 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 252
 IJARI

Fig: 2. Implications of using a folded tree (four4-PE folded

tree shown at the top): some PEs must keep multiple
Lsave’s (center). Bottom: the trunk-phase program code of

the prefix-sum algorithm on a 4-PE folded tree

To see exactly how the folded tree functionally
becomes a binary tree, all nodes of the binary tree are
assigned numbers that correspond to the PE (1 through 4),
which will act like that node at that stage. As can be seen,
PE1 and PE2 are only used once, PE3 is used twice and PE4
is used three times. This corresponds to a decreasing

number of active PEs while progressing from stage to stage.
The first stage has all four PEs active. The second stage has
two active PEs: PE3 and PE4. The third and last stage has
only one active PE: PE4. More importantly, it can also be
seen that PE3 and PE4 have to store multiple Lsave values.
PE4 must keep three: Lsave0 through Lsave2, while PE3
keeps two: Lsave0 and Lsave1. PE1 and PE2 each only
keep one: Lsave0. This has implications toward the code

implementation of the trunk phase on the folded tree as
shown next. The PE program for the prefix-sum trunk-phase
is given at the bottom of Fig. 4. The description column
shows how data is stored or moves, while the actual
operation is given in the last column. The write/read register
files (RF) columns show how incoming data is
saved/retrieved in local RF, e.g., X@0bY means X is saved
at address 0bY, while 0bY@X loads the value at 0bY into

X. Details of the PE data path and the trigger handshaking,
which can make PEs wait for new input data (indicated by
T), are given in Section V. The trunk-phase PE program
here has three instructions, which are identical, apart from
the different RF addresses that are used. Due to the fact that
multiple Lsave’s have to be stored, each stage will have its
own RF address to store and retrieve them.

Fig: 3. Annotated twig-phase graph of 4-PE folded tree

4. Related Work

Hardware Implementation:

Fig. shows give a schematic overview of the

implemented folded tree design. The ASIC comprises of
eight identical 16-bit PEs, each consisting of a data path
with saves power. The design targets 20–80-MHz operation
at 1.2 V. It was fabricated in 130-nm standard cell CMOS.
A PE takes six (down-phase) or seven (up-phase) cycles to
process one 36-bit instruction, which can be divided into
three stages

Fig: 4. Schematic diagram of design overview

1) Preparation, which acknowledges the data and starts
the core when input triggers are received (1 cycle).

2) Execution, which performs the load-execute-jump
stages to do the calculations and fetch the next
instruction pointer (4 cycles).

3) Transfer, which forwards the result by triggering the
next PE in the folded tree path on a request-
acknowledge basis (1–2 cycle). This is tailored toward
executing the key store-and-calculate operation of the

parallel prefix algorithm on a tree as described.
Combined with the flexibility to program the PEs using
any combination of operators available in their data
path, the folded tree has the freedom to run a variety of
parallel-prefix applications.

Table: 1. Folded tree circuit with eight PEs executing a
trunk-phase under nominal conditions (20 MHz, 1.2 v)

5. Simulation Result

According to the algorithm the codes are written in
Verilog. Simulation is processed in Xilinx 14.6simulator.

 Volume 3, Issue 1 (2015) 250-253 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 253
 IJARI

Fig: 5. Output of folded tree

6. Conclusion

This paper presented the folded tree architecture of a
digital signal processor for WSN applications. The design
exploits the fact that many data processing algorithms for
WSN applications can be described using parallel-prefix
operations, introducing the much needed flexibility. Energy

is saved thanks to the following: 1) limiting the data set by
pre-processing with parallel-prefix operations; 2) the reuse
of the binary tree as a folded tree; and 3) the combination of
data flow and control flow elements to introduce a local
distributed memory, which removes the memory bottleneck
while retaining sufficient flexibility.

The simplicity of the programmable PEs that
constitutes the folded tree network resulted in high

integration, fast cycle time, and lower power consumption.
Finally, measurements of a 130-nm silicon implementation
of the 16-bit folded tree with eight PEs were measured to
confirm its performance. It consumes down to 8 pJ/cycle.
Compared to existing commercial solutions, this is at least
10× less in terms of overall energy and 2–3× faster.

References

[1] V. Raghu Nathan, C. Schurgers, S. Park, M. B.

Srivastava, Energy aware wireless micro sensor
networks, IEEE Signal Process. Mag., 19(2), 2002, 40–
50

[2] C. Walravens, W. Dehaene, Design of low-energy data
processing architecture for wsn nodes, in Proc. Design,
Automat. Test Eur. Conf. Exhibit., 2012, 570–573

[3] H. Karl, A. Willig, Protocols and Architectures for
Wireless Sensor Networks, 1st ed. New York: Wiley,
2005

[4] J. Hennessy, D. Patterson, Computer Architecture A
Quantitative Approach, 4th ed. San Mateo, CA: Morgan
Kaufmann, 2007

[5] S. Mysore, B. Agrawal, F. T. Chong, T. Sherwood,
Exploring the processor and ISA design for wireless
sensor network applications, in Proc. 21th Int. Conf.
Very-Large-Scale Integr. (VLSI) Design, 2008, 59–64

[6] J. Backus, Can programming be liberated from the von

neumann style, in Proc. ACM Turing Award Lect.,
1977, 1–29

[7] L. Nazhandali, M. Minuth, T. Austin, Sense Bench:
Toward an accurate evaluation of sensor network

processors, in Proc. IEEE Workload Characterizat.
Symp., 2005, 197–203

[8] P. Sanders, J. Träff, Parallel prefix (scan) algorithms

for MPI, in Proc. Recent Adv. Parallel Virtual Mach.
Message Pass. Interf. 2006, 49–57

[9] G. Blelloch, Scans as primitive parallel operations,”
IEEE Trans. Comput., 38(11), 1989, 1526–1538

[10] N. Weste, D. Harris, CMOS VLSI Design: A Circuits
and Systems Perspective. Reading, MA, USA, Addison
Wesley, 2010

[11] G. E. Blelloch, Prefix sums and their applications,”

Carnegie Mellon Univ., Pittsburgh, PA: USA, Tech.
Rep. CMU-CS-90, 1990

[12] M. Hempstead, J. M. Lyons, D. Brooks, G.-Y. Wei,
Survey of hardware systems for wireless sensor
networks, J. Low Power Electron., 4(1), 2008, 11–29

[13] V. N. Ekanayake, C. Kelly, R. Manohar, SNAP/LE:
An ultra-low power processor for sensor networks,
ACM SIGOPS Operat. Syst. Rev. - ASPLOS, 38(5),

2004, 27–38
[14] V. N. Ekanayake, C. Kelly, R. Manohar, BitSNAP:

Dynamic significance compression for a low energy
sensor network asynchronous processor, in Proc. IEEE
11th Int. Symp. Asynchronous Circuits Syst., Mar.
2005, 144–154

