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     Abstract 
Radio communication exhibits the highest energy consumption in wireless 
sensor nodes. Given their limited energy supply from batteries or scavenging, 
these nodes must trade data communication for on-the-node computation. 
Currently, they are designed around off-the-shelf low-power microcontrollers. 
But by employing a more appropriate processing element, the energy 
consumption can be significantly reduced. This paper describes the design and 

implementation of the newly proposed folded-tree architecture for on-the-node 
data processing in wireless sensor networks, using parallel prefix operations 
and data locality in hardware. Measurements of the silicon implementation 
show an improvement of 10–20× in terms of energy as compared to traditional 
modern micro-controllers found in sensor nodes. 

1. Introduction 

Wireless sensor network (WSN) applications range 
from medical monitoring to environmental sensing, 
industrial inspection, and military surveillance. WSN nodes 
essentially consist of sensors, a radio, and a microcontroller 
combined with a limited power supply, e.g., battery or 
energy scavenging.  Since  radio  transmissions  are  very  

expensive in  terms  of  energy,  they  must  be  kept  to  a  
minimum  in order to extend node lifetime. The ratio of 
communication-to- computation energy cost can range from 
100 to 3000. So data communication must be traded for on-
the-node processing which  in  turn  can  convert  the  many  
sensor  readings  into a  few useful data values. The data-
driven nature of WSN applications requires a specific data 
processing approach. Previously, we have shown how 

parallel prefix computations can be a common denominator 
of many WSN data processing algorithms. The goal of this 
paper is to design an ultra- low-energy WSN digital signal 
processor by further exploiting this and other characteristics 
unique to WSNs.  

Several specific characteristics, unique to WSNs, need 
to be considered when designing the data processor 
architecture for WSNs. 

Data-Driven: WSN applications are all about sensing 
data in an environment and translating this into useful 
information for the end-user. So virtually all WSN 
applications are characterized by local processing of the 
sensed data. 

Many-to-Few: Since radio transmissions are very 
expensive in terms of energy, they must be kept to a 
minimum in order to extend node lifetime. Data 

communication must be traded for on-the-node computation 
to save energy, so many sensor readings can be reduced to a 
few useful data values. 

Application-Specific: A “one-size-fits-all” solution 
does not exist since a general purpose processor is far too 
power hungry for the sensor node’s limited energy budget. 
ASICs, on the other hand, are more energy efficient but lack 
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the flexibility to facilitate many different applications. 

Apart from the above characteristics of WSNs, two key 
requirements for improving existing processing and control 
architectures can be identified 

Minimize Memory Access: Modern micro-controllers 
(MCU) are based on the principles of a divide-and-conquer 

strategy of ultra-fast processors on the one hand and 
arbitrary complex programs on the other hand. But due to 
this generic approach, algorithms are deemed to spend up to 
40– 60% of the time in accessing memory, making it a 
bottle- neck. In addition, the lack of task-specific operations 
leads to inefficient execution, which results in longer 
algorithms and significant memory book keeping. 

Combine Data Flow and Control Flow Principles: To 
man- age the data stream (to/from data memory) and the 

instruction stream (from program memory) in the core 
functional unit, two approaches exist. Under control flow, 
the data stream is a consequence of the instruction stream, 
while  under data flow  the  instruction  stream  is  a  
consequence  of  the  data stream. Traditional processor 
architecture is a control flow machine, with programs that 
execute sequentially as a stream of instructions. In contrast, 
a data flow program identifies the data dependencies, which 

enable the processor to more or less choose the order of 
execution. The latter approach has been hugely successful in 
specialized high-throughput applications, such as 
multimedia and graphics processing. This paper shows how 
a combination of both approaches can lead to a significant 
improvement over traditional WSN data processing 
solutions. 

2. Parallel Prefix Operations 

In the digital design world, prefix operations are best 
known for their application in the class of carry look-ahead 
adders. The addition of two inputs A and B in this case 

consists of three stages a bitwise propagates-generate (PG) 
logic stage, a group PG logic stage, and a sum-stage. The 
outputs of the bitwise PG stage (Pi = Ai ⊕ Bi and Gi = Ai 

・ Bi) are fed as (Pi, Gi)-pairs to the group PG logic stage, 

which implements the following expression: 

(Pi, Gi) ◦ (Pi+1, Gi+1) = (Pi ・ Pi+1, Gi + Pi ・ Gi+1) (1) 
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It can be shown this ◦-operator has an identify element 
I = (1, 0) and is associative. 

 
Fig: 1. Example of a prefix calculation with sum-operator 

using Blelloch’s generic approach in a trunk- and twig-
phase 

For example, the binary numbers A = “1001” and B = 
“0101” are added together. The bitwise PG logic of LSB-
first noted A = {1001} and B = {1010} returns the PG-pairs 
for these values, namely, (P, G) = {(0, 1); (0, 0); (1, 0); (1, 
0)}. Using these pairs as input for the group PG-network, 
defined by the ◦-operator to calculate the prefix operation, 
results in the carry-array G = {1, 0, 0, 0}. In fact, it contains 

all the carries of the addition, hence the name carry look 
ahead. Combined with the corresponding propagate values 
Pi, this yields the sum S = {0111}, which corresponds to 
“1110.” The group PG logic is an example of a parallel 
prefix computation with the given ◦-operator. The output of 
this parallel prefix PG-network is called the all-prefix set 
defined next. Given a binary closed and associative operator 
◦ with identity element I and an ordered set of n elements 

[a0, a1, a2.  . . an−1], the reduced-prefix set is the ordered 

set [I, a0, (a0◦a1). . . (a0◦a1◦・ ・ ・◦an−2)], while the all-

prefix set is the ordered set [a0, (a0 ◦ a1). . . (a0 ◦ a1 ◦ ・ ・ 

・ ◦ an−1)], of which the last element (a0 ◦ a1 ◦ ・ ・ ・ ◦ 

an−1) is called the prefix element. For example, if ◦ is a 
simple addition, then the prefix element of the ordered set 
[3, 1, 2, 0, 4, 1, 1, 3] is _ai = 15. Blelloch’s procedure to 
calculate the prefix-operations on a binary tree requires two 
phases. In the trunk-phase, the left value L is saved locally 
as Lsave and it is added to the right value R, which is 
passed on toward the root. This continues until the parallel-
prefix element 15 is found at the root. Note that each time; a 

store-and-calculate operation is executed. Then the twig-
phase starts, during which data moves in the opposite 
direction, from the root to the leaves. Now the incoming 
value, beginning with the sum identity element 0 at the root, 
is passed to the left child, while it is also added to the 
previously saved Lsave and passed to the right child. In the 
end, the reduced-prefix set is found at the leaves. An 
example application of the parallel-prefix operation with the 
sum operator (prefix-sum) is filtering an array so that all 

elements that do not meet certain criteria are filtered out. 
This is accomplished by first deriving a “keep”-array, 
holding “1” if an element matches the criteria and “0” if it 
should be left out. Calculating the prefix-sum of this array 

will return the amount as well as the position of the to-be-
kept elements of the input array. The result array simply 
takes an element from the input array if the corresponding 
keep-array element is “1” and copies it to the position found 
in the corresponding element of the prefix-sum-array. To 

further illustrate this, suppose the criterion is to only keep 
odd elements in the array and throw away all even elements. 
This criterion can be formulated as keep(x) = (x mod 2).  

The rest is calculated as follows: 
input = [2, 3, 8, 7, 6, 2, 1, 5] 
keep = [0, 1, 0, 1, 0, 0, 1, 1] 
prefix = [0, 1, 1, 2, 2, 2, 3, 4] 
result = [3, 7, 1, 5]. 

The keep-array provides the result of the criterion. 
Then the parallel-prefix with sum-operator is calculated, 
which results in the prefix-array. Its last element indicates 
how many elements are to be kept (i.e., 4). Whenever the 
keep-array holds a “1,” the corresponding input-element is 
copied in the result-array at the index given by the 
corresponding prefix-element (i.e., 3 to position 1, 7 to 
position 2, etc.). This is a very generic approach that can be 

used in combination with more complex criteria as well. 

3. The Proposed Modulo               

Programming and Using the Folded Tree: 

A straightforward binary tree implementation of 
Blelloch’s approach as shown in Fig. costs a significant 
amount of area as n inputs require p = n −1 PEs. To reduce 
area and power, pipelining can be traded for throughput. 
With a classic binary tree, as soon as a layer of PEs finishes 
processing, the results are passed on and new calculations 
can already recommence independently. The idea presented 
here is to fold the tree back onto itself to maximally reuse 

the PEs. In doing so, p becomes proportional to n/2 and the 
area is cut in half. Note that also the interconnect is reduced. 
On the other hand, throughput decreases by a factor of log2 
(n) but since the sample rate of different physical 
phenomena relevant for WSNs does not exceed 100 kHz, 
this leaves enough room for this tradeoff to be made. This 
newly proposed folded tree topology is depicted in Fig. 
which is functionally equivalent to the binary tree on the 

left. 
Now it will be shown how Blelloch’s generic approach 

for an arbitrary parallel prefix operator can be programmed 
to run on the folded tree. As an example, the sum-operator 
is used to implement a parallel-prefix sum operation on a 4-
PE folded tree. First, the trunk-phase is considered. At the 
top of Fig.  A folded tree with four PEs is drawn of which 
PE3 and PE4 are hatched differently. The functional 
equivalent binary tree in the center again shows how data 

moves from leaves to root during the trunk-phase. It is 
annotated with the letters L and R to indicate the left and 
right input value of inputs A and B. In accordance with 
Blelloch’s approach, L is saved as Lsave and the sum L+R 
is passed. Note that these annotations are not global, 
meaning that annotations with the same name do not 
necessarily share the same actual value. 
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Fig: 2. Implications of using a folded tree (four4-PE folded 

tree shown at the top): some PEs must keep multiple 
Lsave’s (center). Bottom: the trunk-phase program code of 

the prefix-sum algorithm on a 4-PE folded tree 

To see exactly how the folded tree functionally 
becomes a binary tree, all nodes of the binary tree are 
assigned numbers that correspond to the PE (1 through 4), 
which will act like that node at that stage. As can be seen, 
PE1 and PE2 are only used once, PE3 is used twice and PE4 
is used three times. This corresponds to a decreasing 

number of active PEs while progressing from stage to stage. 
The first stage has all four PEs active. The second stage has 
two active PEs: PE3 and PE4. The third and last stage has 
only one active PE: PE4. More importantly, it can also be 
seen that PE3 and PE4 have to store multiple Lsave values. 
PE4 must keep three: Lsave0 through Lsave2, while PE3 
keeps two: Lsave0 and Lsave1. PE1 and PE2 each only 
keep one: Lsave0. This has implications toward the code 

implementation of the trunk phase on the folded tree as 
shown next. The PE program for the prefix-sum trunk-phase 
is given at the bottom of Fig. 4. The description column 
shows how data is stored or moves, while the actual 
operation is given in the last column. The write/read register 
files (RF) columns show how incoming data is 
saved/retrieved in local RF, e.g., X@0bY means X is saved 
at address 0bY, while 0bY@X loads the value at 0bY into 

X. Details of the PE data path and the trigger handshaking, 
which can make PEs wait for new input data (indicated by 
T), are given in Section V. The trunk-phase PE program 
here has three instructions, which are identical, apart from 
the different RF addresses that are used. Due to the fact that 
multiple Lsave’s have to be stored, each stage will have its 
own RF address to store and retrieve them. 

 
Fig: 3. Annotated twig-phase graph of 4-PE folded tree 

4. Related Work 

Hardware Implementation: 

Fig. shows give a schematic overview of the 

implemented folded tree design. The ASIC comprises of 
eight identical 16-bit PEs, each consisting of a data path 
with saves power. The design targets 20–80-MHz operation 
at 1.2 V. It was fabricated in 130-nm standard cell CMOS. 
A PE takes six (down-phase) or seven (up-phase) cycles to 
process one 36-bit instruction, which can be divided into 
three stages 

 
Fig: 4. Schematic diagram of design overview 

1) Preparation, which acknowledges the data and starts 
the core when input triggers are received (1 cycle). 

2) Execution, which performs the load-execute-jump 
stages to do the calculations and fetch the next 
instruction pointer (4 cycles). 

3) Transfer, which forwards the result by triggering the 
next PE in the folded tree path on a request-
acknowledge basis (1–2 cycle). This is tailored toward 
executing the key store-and-calculate operation of the 

parallel prefix algorithm on a tree as described. 
Combined with the flexibility to program the PEs using 
any combination of operators available in their data 
path, the folded tree has the freedom to run a variety of 
parallel-prefix applications. 

Table: 1. Folded tree circuit with eight PEs executing a 
trunk-phase under nominal conditions (20 MHz, 1.2 v) 

 

5. Simulation Result 

According to the algorithm the codes are written in 
Verilog. Simulation is processed in Xilinx 14.6simulator. 
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Fig: 5. Output of folded tree 

6. Conclusion 

This paper presented the folded tree architecture of a 
digital signal processor for WSN applications. The design 
exploits the fact that many data processing algorithms for 
WSN applications can be described using parallel-prefix 
operations, introducing the much needed flexibility. Energy 

is saved thanks to the following: 1) limiting the data set by 
pre-processing with parallel-prefix operations; 2) the reuse 
of the binary tree as a folded tree; and 3) the combination of 
data flow and control flow elements to introduce a local 
distributed memory, which removes the memory bottleneck 
while retaining sufficient flexibility.  

The simplicity of the programmable PEs that 
constitutes the folded tree network resulted in high 

integration, fast cycle time, and lower power consumption. 
Finally, measurements of a 130-nm silicon implementation 
of the 16-bit folded tree with eight PEs were measured to 
confirm its performance. It consumes down to 8 pJ/cycle. 
Compared to existing commercial solutions, this is at least 
10× less in terms of overall energy and 2–3× faster. 
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